Angiogenesis in Chronic Thromboembolic Pulmonary Hypertension: A Janus-Faced Player?
Deep Venous Thrombosis - PCI Information
Deep Venous Thrombosis (DVT) is common due to the phenomenon of Virchow's Triad. Therefore, it is very important to closely monitor for DVT, especially in first year following SCI or any time patient is admitted to hospital. Secondary complication of DVT can result in Pulmonary Thromboembolism (PTE) and death.Assessment
Treatment Considerations
ResourceVenous Thromboembolism (VTE)PM&R Knowledge NOW Topics from American Academy of Physical Medicine and Rehabilitation
CTEPH Predictors Following Pulmonary Embolism
Risk for chronic thromboembolic pulmonary hypertension (CTEPH) after pulmonary embolism (PE) is associated with gender, delayed PE diagnosis, hypoxemia, heart load, D-dimer levels, and PE etiology. These findings were published in the Journal of the American Heart Association.
One of the most serious post-PE syndromes is CTEPH. A large variation in the rate of CTEPH has been reported and risk factors are not well understood.
The Contemporary Management and Outcomes in Patients With Venous Thromboembolism (COMMAND VTE) Registry-2 is a large cohort that recruited patients in Japan. In this study, patients (N=5197) with acute symptomatic venous thromboembolism between 2015 and 2020 at 31 sites were evaluated for CTEPH after acute PE (n=2787). The primary outcomes were the incidence of and risk factors for CTEPH.
Following a diagnosis of acute PE, the cumulative rates of CTEPH increased from 1.0% at 180 days to 1.7% at 1 year, 2.0% at 2 years, 2.3% at 3 years, and 2.4% at 4 and 5 years.
"
Several independent risk factors for CTEPH were identified, which could be useful for screening a high-risk population for CTEPH after acute PE.
The patients with (n=48) and without (n=2739) CTEPH comprised 77.1% and 56.3% women (P =.004), their mean ages were 65.2±15.0 and 66.6±15.4 years, and they had a BMI of 23.4±4.4 and 23.8±4.7, respectively.
At PE, patients who went on to develop CTEPH were more likely to have unprovoked PE (79.2% vs 40.2%; P <.001), to present with hypoxemia (70.8% vs 44.0%; P <.001), they had higher right heart load (91.7% vs 40.5%; P <.001), and they had lower D-dimer levels (median, 6.0 vs 11.4 mg/mL; P <.001) compared with patients who did not develop CTEPH.
Most patients with CTEPH (97.9%) were diagnosed within 3 years of PE. A total of 7 patients with CTEPH died, due to malignant diseases (n=4), infection (n=1), chronic obstructive pulmonary disease (n=1), and unknown reasons (n=1). The survival rates after CTEPH were 95.7%, 93.5%, 88.4%, 85.0%, 85.0%, and 72.9% at years 1 through 6, respectively.
Risk for CTEPH was associated with right heart load (adjusted hazard ratio [aHR], 9.28; 95% CI, 3.19-27.00; P <.001), unprovoked PE (aHR, 2.77; 95% CI, 1.22-6.30; P =.02), hypoxemia (aHR, 2.52; 95% CI, 1.26-5.04; P =.009), female gender (aHR, 2.09; 1.05-4.14; P =.04), per day delay in diagnosis from symptom onset (aHR, 1.04; 95% CI, 1.01-1.07; P =.01), and D-dimer levels per 1 mg/mL (aHR, 0.96; 95% CI, 0.92-0.99; P =.02).
This study was limited by the lack of diversity in the study cohort, which may limit the generalizability of these findings.
The study authors concluded, "In this large real-world VTE registry in the DOAC [direct oral anticoagulation] era, the cumulative detection of CTEPH after acute PE was 2.3% at 3 years. Several independent risk factors for CTEPH were identified, which could be useful for screening a high-risk population for CTEPH after acute PE."
Disclosure: Some study authors declared affiliations with biotech, pharmaceutical, and/or device companies. Please see the original reference for a full list of authors' disclosures.
This article originally appeared on The Cardiology Advisor
Comments
Post a Comment